Researchers building modular, self-programming robots to improve HRI

Many work processes would be almost unthinkable today without robots. But robots operating in manufacturing facilities have often posed risks to workers because they are not responsive enough to their surroundings.

To make it easier for people and robots to work in close proximity in the future, Prof. Matthias Althoff of the Technical University of Munich (TUM) has developed a new system called (IMPROV) that uses interconnectable modules for self-programming and self-verification.

When companies use robots to produce goods, they generally have to position their automatic helpers in safety cages to reduce the risk of injury to people working nearby. A new system could soon free the robots from their cages and thus transform standard practices in the world of automation.

Althoff has developed a toolbox principle for the simple assembly of safe robots using various components. The modules can be combined in almost any way desired, enabling companies to customize their robots for a wide range of tasks – or simply replace damaged components. Althoff’s system was presented in a paper in the June 2019 issue of Science Robotics.

Built-in chip enables the robot to program itself

Robots that can be configured individually using a set of components have been seen before. However, each new model required expert programming before going into operation. Althoff has equipped each module in his IMPROV robot toolbox with a chip that enables every modular robot to program itself on the basis of its own individual toolkit.

In the Science Robotics paper, the researchers said “self-programming of high-level tasks was not considered in this work. The created models were used for automatically synthesizing model-based controllers, as well as for the following two aspects.”

Self-verification

To account for dynamically changing environments, the robot formally verified, by itself, whether any human could be harmed through its planned actions during its operation. A planned motion was verified as safe if none of the possible future movements of surrounding humans leads to a collision.

Because uncountable possible future motions of surrounding humans exist, Althoff bound the set of possible motions using reachability analysis. Althoff said the inherently safe approach renders robot cages unnecessary in many applications.

Scientist Christina Miller working on the modular robot arm. Credit: A. Heddergott/TUM

Keeping an eye on the people working nearby

“Our modular design will soon make it more cost-effective to build working robots. But the toolbox principle offers an even bigger advantage: With IMPROV, we can develop safe robots that react to and avoid contact with people in their surroundings,” said Althoff.

With the chip installed in each module and the self-programming functionality, the robot is automatically aware of all data on the forces acting within it as well as its own geometry. That enables the robot to predict its own path of movement.

At the same time, the robot’s control center uses input from cameras installed in the room to collect data on the movements of people working nearby. Using this information, a robot programmed with IMPROV can model the potential next moves of all of the nearby workers. As a result, it can stop before coming into contact with a hand, for example – or with other approaching objects.

“With IMPROV we can guarantee that the controls will function correctly. Because the robots are automatically programmed for all possible movements nearby, no human will be able to instruct them to do anything wrong,” says Althoff.

IMPROV shortens cycle times

For their toolbox set, the scientists used standard industrial modules for some parts, complemented by the necessary chips and new components from the 3D printer. In a user study, Althoff and his team showed that IMPROV not only makes working robots cheaper and safer – it also speeds them up: They take 36% less time to complete their tasks than previous solutions that require a permanent safety zone around a robot.

Editor’s Note: This article was republished from the Technical University of Munich.

Waypoint Robotics provides mobile manipulation platform to MassTLC 5G Robotics Challenge

CAMBRIDGE, Mass. — To support winners of MassTLC 5G Robotics Challenge sponsored by Verizon and Ericsson, Waypoint Robotics Inc. recently delivered a mobile manipulation platform to the 5G Lab at the Alley here. The challenge winners will use the mobile manipulation system, which includes Waypoint’s flagship Vector autonomous mobile industrial robot and its quick-swappable UR5 payload, to develop robotics solutions bolstered by 5G technology.

This first-of-its-kind challenge asks teams to create 5G-powered robotics technologies in three key areas: industrial automation, collaborative robotics (cobots), and warehouse automation. As part of the program, winners will be able to use the Vector mobile manipulation platform as needed. They will also have access to dedicated 5G networks at Verizon’s 5G laboratories in Cambridge and Waltham, Mass., as well as 5G training and mentorship from Verizon and Ericsson.

“We are excited to support the 5G Robotics Challenge winners who are working to accelerate robotics development with the advantages offered by 5G technology and mobile edge computing” said Jason Walker, CEO of Merrimack, N.H.-based Waypoint Robotics. “This is a great example of the thriving New England robotics community working together to push forward innovative technologies that will have real benefits for the workforce and the companies they work for.”

Waypoint Robotics is providing support to the MassTLC 5G Robotics Challenge teams.

Participants in the 5G Robotics Challenge, sponsored by Verizon and Ericsson, can use Waypoint Robotics’ platform. Source: MassTLC

After a strong response to the call for proposals, the winning teams were announced by the Massachusetts Technology Leadership Council (MassTLC) in February. They include university teams from Northeastern University and the University of Massachusetts, Lowell, as well as four start-ups: Ava Robotics, GreenSight Agronomics, RealBotics, and Southie Autonomy.

Winners of the 5G Challenge each received $30,000 in grant funding to create insights, develop new use cases, and conceive innovative products that will advance the robotics industry by leveraging the unique speed, bandwidth and latency benefits of Verizon’s 5G technology and Mobile Edge Compute.

The volume of ideas and creativity proposed during the submittal process underscores a thriving greater Boston robotics community, said MassTLC. Challenges like these with support from organizations like MassTLC, Verizon, and Ericsson help fuel this growth.

Waypoint Robotics said it will continue to contribute to the robotics community by offering advanced technology that is easy to use for both the industrial workforce and entrepreneurs alike who are putting real robots to work in the real world.

Robotics cluster in Odense, Denmark, offers metrics for growth

Robotics cluster in Odense, Denmark, offers metrics for growth

What makes a robotics cluster successful? Proximity to university research and talent, government support of entrepreneurship, and a focus on industry end users are all important. Around the world, regions have proclaimed initiatives to become “the next Silicon Valley.” However, there have been relatively few metrics to describe robotics hubs — until now.

This week, Odense Robotics in Denmark released a report on the economic returns generated by its member companies. Both the amount of exports and the number of employees have increased by about 50 percent, according to Mikkel Christoffersen, business manager at Odense Robotics.

At the same time, the report is realistic about the ongoing challenges facing every robotics cluster, including finding qualified job candidates. As locales from India to Israel and Canada to China look to stimulate innovation, they should look at their own mixes of people, partnerships, and economic performance.

Membership and money

The Odense robotics cluster currently has 129 member companies and more than 10 research and educational institutions. That’s up from 85 in 2015 and comparable with Massachusetts, which is home to more than 150 robotics companies. The Massachusetts Robotics Cluster said it had 122 members as of 2016.

Silicon Valley Robotics says it has supported 325 robot startups, and “Roboburgh” in Pittsburgh includes more than 50 organizations..

In terms of economic performance, the Odense robotics cluster had 763 million euros ($866.3 million U.S.) in turnover, or revenue, in 2017. It expects another 20 percent increase by 2021.

Odense has been friendly to startups, with 64 founded since 2010. The Odense Robotics StartUp Hub has helped to launch 15 companies. Seventy companies, or 54 percent, of those in the Odense area have fewer than 10 employees.

Total investments in the Danish robotics cluster have risen from 322 million euros ($365.6 million) in 2015 to 750 million euros ($851.7 million) last year, with 42 percent coming from investors rather than public funding or loans.

Funding for companies in the Odense robotics cluster continues to rise.

Source: Odense Robotics

In addition, 71 local companies were robotics producers, up from 58 in 2017. The next largest category was integrators at 23. The region also boasted 509 million euros ($577.9 million) in exports in 2017, and 66 percent of its members expect to begin exports.

Market focus

The Odense Robotics report notes that a third of its member companies work with collaborative and mobile robots, representing its focus on manufacturing and supply chain customers. Those are both areas of especially rapid growth in the wider robotics ecosystem.

The global collaborative robotics market will experience a compound annual growth rate (CAGR) of 49.8 percent between 2016 and 2025, compared with a CAGR of 12.1 percent for industrial robots, predicts ABI Research. Demand from small and midsize enterprises will lead revenues to exceed $1.23 billion in 2025, said ABI.

Odense-based Universal Robots A/S is the global market leader in cobot arms. Odense-based gripper maker OnRobot A/S was formed last year by the merger of three companies, and it has since acquired Purple Robotics and raised hundreds of millions in additional funding.

OnRobot Grippers

OnRobot’s lineup of robotic grippers. Source: OnRobot

Similarly, the market for autonomous mobile robots will have a 24 percent CAGR between 2018 and 2022, according to a Technavio forecast. Odense-based Mobile Industrial Robots ApS (MiR) has tripled its sales in each of the past two years.

Both Universal Robots and MiR have broadened their international reach, thanks to ownership by Teradyne Inc. in North Reading, Mass.

Robotics cluster must address talent shortage

Odense Robotics said that its robotics cluster employs 3,600 people today and expects that figure to rise to 4,900 by next year. In comparison, the Massachusetts robotics cluster employed about 4,700 people in 2016.

Odense robotics cluster employee growth

The Danish robotics cluster is a significant employer. Source: Odense Robotics

Even as the numbers of people grow at larger robotics companies (with 50 or more employees) or abroad, businesses in southern Denmark have to look far afield to meet their staffing needs. More than a third, or 39 percent, said they expect to hire from outside of Denmark, and 78 percent said that finding qualified recruits is the biggest barrier to growth.

The average age of employees in the Odense robotics cluster reflects experience, as well as difficulty recruiting. Fifty-five percent of them are age 40 to 60, while only 18 percent are under 30.

This reflects a larger problem for robotics developers and vendors. Even with STEM (science, technology, engineering, and mathematics) programs and attention paid to education, the demand for hardware and software engineers worldwide outstrips the available pool.

The University of Southern Denmark (SDU) is working to address this. It has increased admissions for its bachelor’s degrees in engineering and science and master’s of science programs from 930 in 2015 to 1,235 last year. The university also launched a bachelor’s in engineering for robot systems, admitting 150 students since 2017.

Robotics cluster in Odense includes DTI

The Danish Technological Institute is expanding its facilities in Odense this year. Source: DTI

Another positive development that other robotics clusters can learn from Odense is that 41 percent of workers at robotics firms there went to vocational schools rather than universities.

Partnerships and prospects

Close collaboration with research institutions, fellow robotics cluster members, and international companies has helped the Odense hub grow. Seventy eight percent of cluster members collaborate among themselves, according to the report. Also, 38 percent collaborate with more than 10 companies.

The Odense robotics cluster grew out of a partnership between shipping giant Maersk A/S and SDU. The Maersk Mc-Kinney Moller Institute at SDU continues to conduct research into robotics, artificial intelligence, and systems for healthcare and the energy industry. It recently added aerial drones, soft robotics, and virtual reality to its portfolio.

Last year, the institute invested 13.4 million euros ($15.22 million) in an Industry 4.0 laboratory, and an SDU team won in the industrial robot category at the World Robot Summit Challenge in Japan.

Examples such as Universal Robots and MiR, as well as Denmark’s central position in Northern Europe, are encouraging companies to look for partners. Collaborating with companies inside and outside the Odense robotics cluster is a top priority of members, with 98 percent planning to make it a strategic focus in the next three years.

Of course, the big opportunity and competitive challenge is China, which is potentially a much bigger market than the U.S. or Europe and is trying to build up its own base of more than 800 robotics companies.

It’s only through collective action around robotics clusters that smart regions, large and small, can find their niches, build talent, and maximize the returns on their investments.

Editor’s note: A panel at the Robotics Summit & Expo in Boston on June 5 and 6, 2019, will feature speakers from different robotics clusters. Register now to attend.

The post Robotics cluster in Odense, Denmark, offers metrics for growth appeared first on The Robot Report.

Build better robots by listening to customer backlash

In the wake of the closure of Apple’s autonomous car division (Project Titan) this week, one questions if Steve Jobs’ axiom still holds true. “Some people say, ‘Give the customers what they want.’ But that’s not my approach. Our job is to figure out what they’re going to want before they do,” declared Jobs, who continued with an analogy: “I think Henry Ford once said, ‘If I’d asked customers what they wanted, they would have told me, ‘a faster horse!’” Titan joins a growing graveyard of autonomous innovations, which is filled with the tombstones of BaxterJiboKuri and many broken quadcopters. If anything holds true, not every founder is Steve Jobs or Henry Ford and listening to public backlash could be a bellwether for success.

Adam Jonas of Morgan Stanley announced on Jan. 9, 2019 from the Consumer Electronic Show (CES) floor, “It’s official. AVs are overhyped. Not that the safety, economic, and efficiency benefits of robotaxis aren’t valid and noble. They are. It’s the timing… the telemetry of adoption for L5 cars without safety drivers expected by many investors may be too aggressive by a decade… possibly decades.”

The timing sentiment is probably best echoed by the backlash by the inhabitants of Chandler, Arizona who have been protesting vocally, even resorting to violence, against Waymo’s self-driving trials on their streets. This rancor came to a head in August when a 69-year-old local pointed his pistol at the robocar (and its human safety driver).

In a profile of the Arizona beta trial, The New York Times interviewed some of the loudest advocates against Waymo in the Phoenix suburb. Erik and Elizabeth O’Polka expressed frustration with their elected leaders in turning their neighbors and their children into guinea pigs for artificial intelligence.

Elizabeth adamantly decried, “They didn’t ask us if we wanted to be part of their beta test.” Her husband strongly agreed: “They said they need real-world examples, but I don’t want to be their real-world mistake.” The couple has been warned several times by the Chandler police to stop attempting to run Waymo cars off the road. Elizabeth confessed to the Times, “that her husband ‘finds it entertaining to brake hard’ in front of the self-driving vans, and that she herself ‘may have forced them to pull over’ so she could yell at them to get out of their neighborhood.” The reporter revealed that the backlash tensions started to boil “when their 10-year-old son was nearly hit by one of the vehicles while he was playing in a nearby cul-de-sac.”

Rethink's Baxter robot was the subject of a user backlash because of design limitations.

The deliberate sabotaging by the O’Polkas could be indicative of the attitudes of millions of citizens who feel ignored by the speed of innovation. Deployments that run oblivious to this view, relying solely on the excitement of investors and insiders, ultimately face backlash when customers flock to competitors.

In the cobot world, the early battle between Rethink Robotics and Universal Robots (UR) is probably one of the most high-flying examples of tone-deaf invention by engineers. Rethink’s eventual demise was a classic case of form over function with a lot of hype sprinkled on top.

Rodney Brooks‘ collaborative robotics enterprise raised close to $150 million in its short decade-long existence. The startup rode the coattails of fame of its co-founder, who is often referred to as the godfather of robotics, before ever delivering a product.

Dedicated Rethink distributor, Dan O’Brien, recalled, “I’ve never seen a product get so much publicity. I fell in love with Rethink in 2010.” Its first product, Baxter, released in 2012 and promised to bring safety, productivity, and a little whimsy to the factory floor. The robot stood at around six feet tall with two bright colored red arms that were connected to an animated screen complete with friendly facial expressions.

At the same time, Rethink’s robots were not able to perform as advertised in industrial environments, leading to a backlash and slow adoption. The problem stemmed from Brooks’ insistence in licensing their actuation technology, “Series Elastic Actuators (SEAs),” from former employer MIT instead of embracing the leading actuator, Harmonic Drive, for its mobility. Users demanded greater exactness in their machines that competitors such as UR, a Harmonic customer, took the helm in delivering.

Universal Robots' cobot arms don't have the problems that led to a backlash against Rethink's robots

Universal Robots’ cobots perform better than those of the late Rethink Robotics.

The backlash to Baxter is best illustrated by the comments of Steve Leach, president of Numatic Engineering, an automation integrator. In 2010, Leach hoped that Rethink could be “the iPhone of the industrial automation world.”

However, “Baxter wasn’t accurate or smooth,” said Leach, who was dismayed after seeing the final product. “After customers watched the demo, they lost interest because Baxter was not able to meet their needs.”

“We signed on early, a month before Baxter was released, and thought the software and mechanics would be refined. But they were not,” sighed Leach. In the six years since Baxter’s disappointing launch Rethink did little to address the SEAs problem. Most of the 1,000 Baxters sold by Rethink were delivered to academia, not the commercial industry.

By contrast, Universal booked more 27,000 robots since its founding in 2005. Even Leach, who spent a year passionately trying to sell a single Baxter unit, switched to UR and sold his first one within a week. Leach elaborated, “From the ground up, UR’s firmware and hardware were specifically developed for industrial applications and met the expectations of those customers. That’s really where Rethink missed the mark.”

This garbage can robot seen at CES was designed to be cheap and avoid consumer backlash.

As machines permeate human streets, factories, offices, and homes, building a symbiotic relationship between intended operators and creators is even more critical. Too often, I meet entrepreneurs who demonstrate concepts with little input from potential buyers. This past January, the aisles of CES were littered with such items, but the one above was designed with a potential backlash in mind.

Simplehuman, the product development firm known for its elegantly designed housewares, unveiled a $200 aluminum robot trash can. This is part of a new line of Simplehuman’s own voice-activated products, potentially competing with Amazon Alexa. In the words of its founder, Frank Yang, “Sometimes, it’s just about pre-empting the users’ needs, and including features we think they would appreciate. If they don’t, we can always go back to the drawing board and tweak the product again.”

To understand the innovation ecosystem in the age of hackers join the next RobotLab series on “Cybersecurity & Machines” with John Frankel of ffVC and Guy Franklin of SOSA – February 12th in New York City, seating is limited so RSVP today!

The post Build better robots by listening to customer backlash appeared first on The Robot Report.

GM cobot pioneer: lessons to learn from Rethink Robotics

In the mid-1990s, I led the industry/academia team at General Motors that built the world’s first collaborative robots. It was hard work; most people even in robotics had not heard of a “cobot” (or, “intelligent assist devices” (IADs) as we referred to the broader category), knew what it was, much less how it could be…

The post GM cobot pioneer: lessons to learn from Rethink Robotics appeared first on The Robot Report.

German mail delivery service tests Effidence’s PostBots

German postal officials are testing a robot to assist mail carriers in making their deliveries. The technology, called PostBot, is undergoing a six-week pilot program in the German town of Bad Hersfeld that’s southeast of Bonn. Carriers, who will initially just use the robots for delivery between the city administrative offices, are eventually expected to…

The post German mail delivery service tests Effidence’s PostBots appeared first on The Robot Report.