"Technophobes"—people who fear robots, artificial intelligence and new technology that they don't understand—are much more likely to be afraid of losing their jobs to technology and to suffer anxiety-related mental health issues, a Baylor University study found.
Elementary and secondary school students who later want to become scientists and engineers often get hands-on inspiration by using off-the-shelf kits to build and program robots. But so far it's been difficult to create robotic projects to foster interest in the "wet" sciences – biology, chemistry and medicine – so called because experiments in these field often involve fluids.
In order to remain safe, robots are commonly used to reach what human hands cannot. Often a robot is used to uncover victims from rubble or bring them safely to shore. These helpful hands can even reach a world far beyond our own – outer space.
An innovative robotic system that can clean building exteriors using water jets or give new coats of paint is now ready to serve customers in Singapore.
In 2006, beekeepers became aware that honeybee populations were dying off at increasingly rapid rates. Scientists are also concerned about the dwindling populations of monarch butterflies. Researchers have been scrambling to come up with explanations and an effective strategy to save both insects or replicate their pollination functions in agriculture.
For robots to do what we want, they need to understand us. Too often, this means having to meet them halfway: teaching them the intricacies of human language, for example, or giving them explicit commands for very specific tasks.
If someone asks you to hand them a wrench from a table full of different sized wrenches, you'd probably pause and ask, "which one?" Robotics researchers from Brown University have now developed an algorithm that lets robots do the same thing—ask for clarification when they're not sure what a person wants.
The University of Manchester is to lead a consortium to build the next generation of robots that are more durable and perceptive for use in nuclear sites.
A semiautonomous robot may soon be roaming agricultural fields gathering and transmitting real-time data about the growth and development of crops, information that crop breeders—and eventually farmers—can use to identify the genetic traits in plants likely to produce the greatest yields.
Creating tiny muscle-powered robots that can walk or swim by themselves—or better yet, when prompted—is more complicated than it looks.